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Abstract

This paper presents several acceleration techniques for reduced-order models based on the proper orthogonal decom-
position (POD) method. The techniques proposed herein are: (i) an algorithm for splitting the database of snapshots
generated by the full-order model; (ii) a method for solving quasi-symmetrical matrices; (iii) a strategy for reducing the
frequency of the projection. The acceleration techniques were applied to a POD-based reduced-order model of the two-
phase flows in fluidized beds. This reduced-order model was developed using numerical results from a full-order compu-
tational fluid dynamics model of a two-dimensional fluidized bed. Using these acceleration techniques the computational
time of the POD model was two orders of magnitude shorter than the full-order model.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The numerical simulation of transient transport phenomena requires a large amount of computational
time, in spite of the developments in computer hardware. It is often difficult to identify the dominant spatial
features from these numerical simulations. These issues are exacerbated when modeling multiphase flows and
chemical reactions, such as in multiphase flow reactors. It is also difficult to assess how the process variables
influence each other. To address these problems, reduced-order models of fluidized bed have been recently
developed [1,2].

Reduced-order models (ROMs) have been commonly used in structural dynamics for years. Currently these
techniques are also applied to fluid dynamics studies. The idea is to determine the dominant spatial modes of
the flow field and use these modes, as opposed to many local grid points, to represent the flow [3]. The
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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Nomenclature

Roman

a coefficients of discretized equations
A cell face area
b coefficients of discretized equations
D spatial domain
Dp particle diameter
F gs drag force between fluid and solids
~g gravitational acceleration vector
hs0 initial height of packed bed
imax number of cells in x-direction
jmax number of cells in y-direction
M number of snapshots (that is, dimension of temporal domain)
m number of POD modes
N dimension of spatial domain
p pressure
R autocorrelation function
t time
S stress tensor
~v velocity vector
DV cell volume
ðx; yÞ Cartesian coordinates

Greek

a time-dependent orthogonal coefficients
� volume fraction
e error
q density
k eigenvalue
n convection weighting factor
u time-independent orthonormal basis function
l viscosity

Superscripts

� complex conjugate
H tentative value, i.e., value before correction
p component corresponding to pressure p

u component corresponding to velocity u

v component corresponding to velocity v

� component corresponding to volume fraction

Subscripts

0 zeroth mode or initial value
E center of east neighbor cell in mass balance equations or east face of control volume in momentum

balance equations
e east face of control volume in mass balance equation or east neighbor cell of control volume in

momentum balance equations
g gas phase
i ith mode
k kth mode
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‘ either gas or solids phase
m either gas or solids phase
nb neighbor cells
N center of north neighbor cell in mass balance equations or north face of control volume in momen-

tum balance equations
n north face of control volume in mass balance equation or north neighbor cell of control volume in

momentum balance equations
P center of control volume in mass balance equation
p center of control volume in momentum balance equations
S center of south neighbor cell in mass balance equations or south face of control volume in momen-

tum balance equations
s solids phase or south face of control volume in mass balance equations or south neighbor cell of

control volume in momentum balance equations
W center of west neighbor cell in mass balance equations or west face of control volume in momen-

tum balance equations
w west face of control volume in mass balance equation or west neighbor cell of control volume in

momentum balance equations
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reduction is from the large number of local grid points (on the order of tens of thousands or more) to a small
number of spatial modes (typically less than 100).

In the first attempts to use ROMs for fluid flows [4–8] the models were developed for small perturba-
tions about a nonlinear steady flow field. As a result, these models were limited in their applicability.
Reduced-order models were also developed for flows with large perturbations using the method of proper
orthogonal decomposition (POD) [9–11,1,2,12,13]. Recent reviews of ROMs based on POD are presented
in [14,15].

The objective of this paper is to present a set of acceleration techniques for POD-based reduced-order mod-
els. These techniques include: (i) an algorithm for splitting the snapshot database; (ii) a method for solving
quasi-symmetrical matrices; (iii) a strategy for reducing the frequency of the POD projection. The next section
presents the full-order model used for the simulation of the transport phenomena in a fluidized bed. This is
followed by a description of the POD-based reduced-order model developed for the full-order model. A
detailed comparison of the full-order and reduced-order model algorithms is described next. The acceleration
techniques proposed for the solution of the reduced-order model are subsequently presented.

2. Full-order model

The term ‘‘full-order model” denotes the numerical model used to solve the transport equations. For the
isothermal flow considered herein, these governing equations consist of the gas-phase and solids-phase mass
and momentum balance. This section describes the governing equations of the full-order model and the
numerical solver used to solve these equations.

2.1. Governing equations

The gas–solids interactions in a fluidized bed were modeled herein using a two-fluid hydrodynamic model
[16]. The model described the isothermal flow of dense or dilute fluid–solids mixtures, based on the fundamen-
tal laws of mass and momentum conservation. The governing equations of this model were the following sys-
tem of partial differential equations:

Gas-phase and solids-phase mass balance
o

ot
ð�mqmÞ þ r � ð�mqm~vmÞ ¼ 0: ð1Þ
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Gas-phase and solids-phase momentum balance
o

ot
ð�mqm~vmÞ þ r � ð�mqm~vm~vmÞ ¼ ��mrpg þr � Sm þ F gsð~vs �~vgÞ þ �mqm~g: ð2Þ
In the momentum equation, the first term on the right side represents the normal surface forces; the second
term represents the shear surface forces. The last two terms represent the drag force between the fluid and sol-
ids phases, and the gravitational body forces.

2.2. Numerical solver

The full-order model described herein consisted of the transport equations (1) and (2). The numerical algo-
rithm developed at the Department of Energy’s National Energy Technology Laboratory and implemented in
the Multiphase Flow with Interphase eXchanges (MFIX) code [16] was used to solve the transport equations.
The solution of these equations provided the database for the proper orthogonal decomposition [1].

MFIX uses a staggered grid arrangement to prevent unphysical oscillations of the solution [17, p. 116]. Scalars
are stored at the cell centers; components of velocity vectors are stored at the cell faces. The equations for scalar
variables are solved on the main grid. The equations for velocity components are solved on two staggered grids.

2.2.1. Mass balance

A control volume for the mass balance equations is shown in Fig. 1, where P is the center of the control
volume. E, W, N, and S represent the centers of the east, west, north, and south neighbor cells of the control
volume; e, w, n, and s represent the east, west, north, and south faces of the control volume. The volume frac-
tions �m and densities qm are stored at the cell centers P, E, W, N, and S. In order to discretize the convection
terms, volume fraction and density values at the cell faces e, w, n, and s must be evaluated.

MFIX uses a convection weighting factor n to calculate the volume fraction and density at each face [18].
For example, ð�mqmÞ at the east face is calculated as [17, p. 44]
ð�mqmÞe ¼ ðnmÞeð�mqmÞE þ ð�nmÞeð�mqmÞP ; ð3Þ

where ðnmÞe is the convection weighting factor for ð�mqmÞ at the east face and ð�nmÞe ¼ 1� ðnmÞe. Using this, the
mass balance equations are discretized as [17, p. 99]
ðamÞP ð�mqmÞP ¼
X

nb

ðamÞnbð�mqmÞnb þ ðbmÞP ; ð4Þ
where the subscript nb represents E, W, N, and S neighbors. The coefficients ðamÞnb, ðamÞP and ðbmÞP are defined
in [2, Appendix A].

2.2.2. Momentum balance

The control volumes used to discretize the x- and y-momentum balance equations are shown in Fig. 2,
where p denotes the center of the control volume; e, w, n, and s represent the east, west, north, and south
neighbor cells of the control volume; E, W, N, and S denote the east, west, north, and south faces of the con-
Fig. 1. Control volume for mass balance.



Fig. 2. Control volume for momentum balance.
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trol volume; NE, NW, SE, and SW denote the four corners of the control volume. The discretized form of the
gas and solids x-momentum equations is [18, p. 26]
ðau
mÞpðumÞp ¼

X
nb

ðau
mÞnbðumÞnb þ ðb

u
mÞp � Apð�mÞpððpgÞE � ðpgÞW Þ þ ðF gsðu‘ � umÞpÞDV ; ð5Þ
where m indicates the phase. ‘ denotes the phase other than m, that is, if m corresponds to the solids phase
then ‘ corresponds to the gas phase, and vice versa. The y-momentum equations are discretized similarly
ðav
mÞpðvmÞp ¼

X
nb

ðav
mÞnbðvmÞnb þ ðb

v
mÞp � Apð�mÞpððpgÞN � ðpgÞSÞ þ ðF gsðv‘ � vmÞpÞDV : ð6Þ
The coefficients ðau
mÞnb, ðau

mÞp, ðbu
mÞp, ðav

mÞnb, ðav
mÞp and ðbv

mÞp are defined in [2, Appendix B].

2.2.3. Gas pressure correction

The full-order model solver uses the gas pressure correction equation instead of the gas mass balance equa-
tion. The former is derived from the discretized gas mass balance equation and the discretized momentum bal-
ance equations, and can be written as [18, p. 41]
ap
P ðp0gÞP ¼

X
nb

ap
nbðp0gÞnb þ bp

P : ð7Þ
The coefficients ap
nb, ap

P and bp
P are defined in [2, Appendix C].

Eq. (7) is solved to determine the gas pressure correction, p0g, using the same control volume as for the mass
balance equations. The velocity correction along the x-direction is given by [18]
ðumÞp ¼ ðuH

mÞp � dmpððp0gÞE � ðp0gÞW Þ; ð8Þ

where the expressions of dgp and dsp are given in [2]. The superscript H indicates tentative velocities (i.e., veloc-
ities before correction). In (8), p is the center of the control volume shown in Fig. 2a.

Similarly, the velocity correction along the y-direction is given by
ðvmÞp ¼ ðvH

mÞp � dmpððp0gÞN � ðp0gÞSÞ; ð9Þ

where p now is the center of the control volume shown in Fig. 2b.

2.2.4. Solids volume fraction correction
To solve dense packing of solids, a solids volume fraction correction equation is used by including the effect

of solids pressure in the discretized solids mass balance equation [18, p. 48]. This solids volume fraction cor-
rection equation
a�sP �
0
sP ¼

X
nb

a�snb�
0
snb þ b�s

P ð10Þ
is solved instead of the solids mass balance equation. The coefficients a�snb, a�sP and b�sP are defined in [2, Appen-
dix D]. The solids volume fraction correction, �0s, was used to calculate the solids volume fraction �s. The gas
void fraction, �g, was then calculated as �g ¼ 1� �s.
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3. Reduced-order model based on proper orthogonal decomposition

Proper orthogonal decomposition is a procedure for extracting the optimal basis set from an ensemble of
observations. The POD extracts key spatial features from physical systems with spatial and temporal charac-
teristics [19]. Let us consider a sequence of numerical or experimental observations represented by scalar func-
tions uðx; tiÞ; i ¼ 1; . . . ;M . These observations are assumed to form a linear, finite-dimensional Hilbert space L2

on a spatial domain D. The observations uðx; tiÞ are parameterized by ti, which represents time. From the
ensemble of observations, POD extracts time-independent orthonormal basis functions fukðxÞg and time-
dependent orthogonal coefficients fakðtiÞg, such that the reconstruction
uðx; tiÞ ¼
XM

k¼1

akðtiÞukðxÞ; i ¼ 1; . . . ;M ; ð11Þ
which is an approximation, is optimal in the sense that the average least-square truncation error
em ¼ uðx; tiÞ �
Xm

k¼1

akðtiÞukðxÞ
�����

�����
2* +

ð12Þ
is a minimum for any given number m 6 M of basis functions over all possible sets of basis functions. Herein
k � k denotes the L2-norm given by kf k ¼ ðf ; f Þ

1
2, where ð; Þ denotes the Euclidean inner product. h�i denotes an

ensemble average over the number of observations hf i ¼
PM

i¼1f ðx; tiÞ=M . The optimum condition specified by
(12) is equivalent to finding functions u that maximize the normalized averaged projection of u onto u, that is,
maxu2L2ðDÞhjðu;uÞj

2i=kuk2, where j � j denotes the modulus. This maximization problem reduces to [19, p. 89]
Z
D
huðxÞu�ðyÞiuðyÞdy ¼ kuðxÞ: ð13Þ
Therefore, the optimal basis functions fukg, called the POD basis functions, are the eigenfunctions of the inte-
gral equation (13), whose kernel function is the auto-correlation function huðxÞu�ðyÞi � Rðx; yÞ. For a finite-
dimensional case, the auto-correlation function Rðx; yÞ is replaced by the tensor product matrix
Rðx; yÞ ¼

PM
i¼1uðx; tiÞuTðy; tiÞ=M .

The eigenfunctions ukðxÞ are also vector-valued functions and have the same dimension N as the observa-
tions u. It can be shown that the eigenvectors of R are the eigenfunctions ukðxÞ [19, p. 90], again, called the
POD basis functions.

For two-dimensional isothermal gas–solids flow, the full-order computational fluid dynamics model solves
the discretized momentum equations of both the gas-phase and the solids-phase (5) and (6), the gas pressure
correction equation (7), and the solids volume fraction correction equation (10). The dependent field variables
of the full-order model were the gas pressure pg, the solids volume fraction �s, and the velocity components of
the gas-phase and the solid-phase, ug, vg, us, and vs. Using the full-order model, a database of snapshots of
these variables was generated using the MFIX code. The POD basis functions u

pg
i , u�s

i , uug
i , uvg

i , uus
i , and

uvs
i were extracted from this database. These POD basis functions were obtained from the auto-correlation

functions R@ðx; yÞ � h@ðxÞ@�ðyÞi, where @ denotes any of the dependent variables. Consequently, these POD
basis functions were sub-optimal because they implicitly assumed that the cross-correlations of the compo-
nents of vector fpg; �s; ug; vg; us; vsg were zero.

In developing the reduced-order model, one can project onto the basis functions either the partial differen-
tial equations of the full-order model or the discretized form of these equations. The latter option has been
used herein in order to take advantage of the implementation developed for the full-order model. The discret-
ized x- and y-momentum equations, the discretized gas pressure correction equation and the discretized solids
volume fraction correction equation are projected onto the basis functions uum , uvm , upg , and u�s , respectively.
Six systems of linear algebraic equations are obtained:
eAumaum ¼ eBum ; ð14ÞeAvmavm ¼ eBvm ; ð15Þ
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eApgap0g ¼ eBpg ; ð16ÞeA�sa�
0
s ¼ eB�s ; ð17Þ
where m denotes the phase (g or s). The first five systems of equations, (14)–(16), are identical to those derived
in [2] and for this reason will not be repeated in here. The system of equations (17) represents to solids volume
fraction correction equations. The derivation of the expressions of eA�s and eB�s is shown in the following.

The reconstruction (11) can be written for solids volume fraction as:
�sðx; tÞ ¼ u�s
0 ðxÞ þ

Xm�s

k¼1

a�
0
s

k ðtÞu�s
k ðxÞ; ð18Þ
where the time independent term u�s
0 ðxÞ, which represents the zeroth-order term, is kept on the right-hand side

and not deducted from �sðx; tÞ. Similarly to the pressure, the solids volume fraction can be written as the sum
of a tentative value, �H

s and a correction, �0s
�sðx; tÞ ¼ �H

s ðxÞ þ �0sðx; tÞ; ð19Þ

where u�s

0 and �H

s are assumed to be equal.
Combining (18) and (19) yields
�0sðx; tÞ ¼
Xm�s

k¼1

a�
0
s

k ðtÞu�s
k ðxÞ: ð20Þ
Dropping for convenience the �0s superscript, replacing in (10) the subscript P by i, and substituting (20) into
(10) yields
Xm

k¼1

ak aiukðxiÞ �
XNB

inb¼1

ainbukðxinbÞ
 !

¼ bi; i ¼ 1; . . . ;N ; ð21Þ
where inb represents the neighbor of cell i. NB is the total number of neighbors of a cell, which herein is con-
stant and equal to 4, and m is the number of modes kept in the proper orthogonal decomposition.

Eq. (21) can be written as
Xm

k¼1

ak ½A�fukg �
XNB

nb¼1

½Anb�fuknb
g

 !
¼ fbg; ð22Þ
where ½A� and ½Anb� are diagonal matrices with Aii ¼ ai and Anbii ¼ ainb , i ¼ 1; . . . ;N , fukg ¼ fukðx1Þ;ukðx2Þ; . . . ;
ukðxN ÞgT and fuknb

g ¼ fukðx1nbÞ;ukðx2nbÞ; . . . ;ukðxNnbÞg
T.

Eq. (22) is then projected on the basis functions by left-multiplying it with the transposed eigenvectors
fu‘g

T

fu‘g
T
Xm

k¼1

ak ½A�fukg �
XNB

nb¼1

½Anb�fuknb
g

 !
¼ fu‘g

Tfbg; ‘ ¼ 1; . . . ;m: ð23Þ
The system of m equations (23) has m unknowns ai and, after adding back the superscripts �s and �0s, can be
written as
½ eA�s �fa�0sg ¼ feB�sg; ð17Þ

where
eA�s
‘k ¼ fu‘g

T½A�fukg �
XNB

nb¼1

fu‘g
T½Anb�fuknb

g; ‘; k ¼ 1; . . . ;m ð24Þ
and
 eB�s
‘ ¼ fu‘g

Tfbg; ‘ ¼ 1; . . . ;m:
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4. Structure of numerical algorithms

The purpose of this section is to compare the numerical implementation of the full-order model (FOM),
against numerical implementation of the reduced-order model (ROM). This section presents the time profiles
of the FOM and ROM codes for a typical flow case. The computational time per subiteration, the number of
subiterations, and number of operations are also provided.

The solution algorithms used in the ROM and the FOM are similar in organization. For a two-dimensional
isothermal case, the FOM solves for six dependent field variables: solids volume fraction, gas pressure, and gas
and solids phase velocities. The ROM solves for the time coefficients aðtÞ of each dependent field variable and
then reconstructs the dependent variables using the basis functions. Both the FOM and the ROM use fully
implicit, time marching algorithms. At each time step subiterations are performed until a residual criterion
is satisfied. The time step size is adjusted based on the convergence rate during the calculation.

A comparison of the FOM and ROM codes was done for a minimum fluidization case [20], where the solu-
tion was simulated for 0.8 s, from 0.2 to 1.0 s. From 0 to 0.2 s a background gas was injected at the bottom of
the fluidized bed with a velocity of 1 cm/s. At t = 0.2 s, a central jet with the width of 1.016 cm and velocity of
12.6 cm/s was turned on. The geometry and boundary conditions are shown in Fig. 3 and the parameters are
given in Table 1. Three hundred and twenty snapshots were generated while using the full-order model. These
snapshots were as equally spaced in time as possible, given the variable time step of the full-order model. The
Fig. 3. Geometry and boundary conditions.

Table 1
Parameters of fluidized bed

Parameter Description Units

xlength Length of the domain in x-direction cm 25.4
ylength Length of the domain in y-direction cm 76.5
imax Number of cells in x-direction – 50
jmax Number of cells in y-direction – 76
v1, v2 Gas inflow velocities cm/s 12.6, 1
pgs

Static pressure at outlet g/cm/s2 1:01e6

T g0 Gas temperature K 297
lg0

Gas viscosity g/cm/s 1:8e�4

tstart Start time s 0.2
tstop Stop time s 1.0
qs Particle density g/cm3 1.0
Dp Particle diameter cm 0.05
hs0 Initial height of packed bed cm 14.7
��g Initial void fraction of packed bed – 0.4



Table 2
Number of modes used and their symbols

Field variable Symbol Number of modes

Set 1 Set 2

Gas pressure Npg
2 2

Solids volume fraction N �s 7 3
u gas velocity Nug 2 1
v gas velocity Nvg 5 5
u solids velocity Nus 8 4
v solids velocity Nvs 6 3
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number of modes used in the ROM is given by Set 1 in Table 2. For this case, one subiteration took 0.386 s in
the ROM and 0.213 s in the FOM. The FOM required a total of 43,600 subiterations while the ROM only
required a total of 2300 subiterations. Consequently, although a subiteration in the reduced-order model took
1.8 times more than a subiteration in the full-order model, the reduced-order model was 10.6 times faster than
the full-order model for simulating 0.8 s of flow in a fluidized bed.

The speed-up was due to the fact that the ROM required fewer subiterations per time step than the FOM.
This was the result of the fact that the time step limitations in the reduced-order model that solved ODEs were
less restrictive that those of the full-order model that solved PDEs. Consequently, the ROM could use larger
time steps than the FOM, as it will be shown in Section 5.4. The speed-up obtained by using the reduced-order
model increases as the duration of the simulation increases.

A comparison of the full-order and reduced-order models is presented to explain the differences in compu-
tational time per subiteration. To facilitate this comparison, the subroutines of the FOM and the ROM were
divided into similar groups. Although the role of each group is the same in the FOM and the ROM, the details
of the subroutines in the groups differ. The definitions of the groups are presented in Table 3. Both models
spent most of computational time in groups 5, 6, and 7, as shown in Table 4. These three groups form the
subiteration loop.

Group 7 was chosen to be explored in detail for two reasons. First, the calculations in this group are a sig-
nificant percentage of the total computation time. The calculations in group 7 take approximately 24% of the
total computation time of the ROM and 12% of the FOM. Second, numerical tests showed that in order to
achieve a good solution, the volume fraction often required more modes than most of the other field variables.

To determine the most computationally expensive calculations, a time profile of group 7 was generated for
both the FOM and the ROM. These time profiles are shown in Fig. 4. Fig. 4a indicates that the FOM spent
most of the computing time solving the linear set of equations (10). In contrast, the ROM spent most of the
computing time on the projection of the basis functions. In the ROM, the computational time spent for the
solution of the linear systems of equations was less than 1% of the total computational time. If less than three
modes are used, the reconstruction of the field variables, which is part of the correction group, uses the major-
ity of the calculation time. The conclusions drawn based on the solids volume fraction hold for all the depen-
dent field variables.
Table 3
Description of common groups of the FOM and the ROM codes

Group Description

1 Reads initial data, sets boundary and initial conditions
2 Calculates initial values of dependent variables
3 Calculates initial values inside the time loop
4 Calculates initial values inside the subiteration loop
5 Updates velocity values
6 Updates pressure and corrects velocities
7 Updates solids volume fraction and corrects velocities
8 Checks convergence and performs final steps in iteration loop
9 Outputs results



Fig. 4. Time profile of group 7: (a) FOM; (b) ROM.

Table 5
Number of operations for the projection routines in the ROM

Variable Additions Multiplications

um ðimax � 1Þðjmax þ 2Þð8N2
um
þ 9Num Þ ðimax � 1Þðjmax þ 2Þð6N2

um
þ 7Num Þ

vm imaxðjmax þ 2Þð8N2
vm
þ 9N vm Þ imaxðjmax þ 2Þð6N2

vm
þ 7Nvm Þ

pg imax � jmaxð6N2
pg
þ 2Npg

Þ imax � jmaxð7N2
pg
þ 2Npg

Þ
�g imax � jmaxð6N2

�s
þ 2N �s Þ imax � jmaxð7N2

�s
þ 2N �s Þ

Table 4
Time profile of the FOM and the ROM codes

Group FOM ROM

(s) (%) (s) (%)

1 0.396 0.004 0.874 0.097
2 0.586 0.006 0.007 0.001
3 171.655 1.794 4.987 0.555
4 0.231 0.002 25.727 2.863
5 5794.622 60.574 563.552 62.729
6 2331.241 24.370 82.377 9.169
7 1162.497 12.152 213.978 23.817
8 83.266 0.870 6.256 0.696
9 21.670 0.227 0.644 0.073

Total 9566.164 100.00 898.402 100.00
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To further determine the difference between the reduced-order model and the full-order model, the number
of operations was estimated in the projection subroutines of the ROM.

Table 5 shows that the number of operations in the ROM varies as a quadratic function of the number of
modes. In the FOM, the number of total operations was approximately 28ðimax þ 2Þðjmax þ 2Þ [21]. Therefore
the number of operations per subiteration is always greater in the ROM than in the FOM, except for the atyp-
ical case when only one mode is used to represent each field variable.

5. Acceleration methods

This section describes several methods developed to further decrease the computational time of the
reduced-order model. The techniques presented herein are: (i) an algorithm for splitting the database; (ii)
an algorithm for solving quasi-symmetrical matrices; (iii) a strategy for reducing the frequency of updatingeA. The influence of the time step adjustment strategy is also investigated.
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5.1. Database splitting

The POD basis functions are extracted from a database of snapshots generated by numerically integrating
the governing differential equations. Currently, it is common to use a database that includes all the snapshots.
Using a single database that covers the entire time domain, however, could be too restrictive. For example,
consider the transience during the startup of the flow in a fluidized bed. The large variation in time at startup
requires more modes than are necessary to model the flow features present in the latter part of the simulation.
A method to avoid this problem is to split the database of snapshots.

Splitting the database into multiple subsets produces an auto-correlation matrix R that contains more rel-
ative energy in the first modes. Herein, energy is defined as the sum of all the POD eigenvalues. The relative
energy captured by the kth mode is defined as kk=

PM
i¼1ki [11]. As the relative energy of the first modes

increases, fewer POD modes are needed in the reconstruction (11) to approximate the solution. Consequently,
the computational cost of the reduced-order model decreases.

The snapshots created by solving the full-order model for the minimum fluidization case were divided into
two parts. The first part, which captured the transient flow, ranged from 0.2 to 0.35 s and included 60 snap-
shots. The second part, which captured the slower varying flow, ranged from 0.35 to 1.0 s and included 260
snapshots. Fig. 5 shows the cumulative energy of the POD modes obtained using a single database that cov-
ered the entire time domain. Figs. 6 and 7 show the cumulative energy of the POD modes for the split
databases.

The energy variation extracted from the 0.2–1.0 s database, shown in Fig. 5, was similar to the energy var-
iation extracted from the transient snapshots, shown in Fig. 6. Most of the energy extracted from the 0.35–
1.0 s database was, however, concentrated in the first mode, as shown in Fig. 7. This concentration of the
energy allowed capturing most of the flow features using fewer modes compared to the transient regime.

Computing the auto-correlation matrix for each database subset is a straight forward process. Determining
the bounds of each subset such that to reduce the computational cost is less trivial. Two methods for the sep-
aration of the snapshots into subsets were explored.

The first method measured the time variation of the time coefficients, a, of the dominant modes of each field
variable. The variation of the time coefficients must be calculated and monitored for several modes for every
field variable. Monitoring all of these values can, in some cases, produce conflicting information. An alterna-
tive to monitoring all six field variables was to monitor only the field variables that most affect the flow. For
the minimum fluidization case, the flow was most affected by the first modes of gas pressure and gas velocity in
the y-direction. The time variation of the first time coefficient of gas pressure, a

pg

1 , is shown in Fig. 8. The var-
iation of the first time coefficient of the gas pressure, Da

pg

1 ¼ ja
pg

1 ðt þ DtÞ � a
pg

1 ðtÞj, is shown in Fig. 9. In this
case, the end of the transient regime was at t ¼ 0:35 s.
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Fig. 5. Cumulative energy spectrum for a database that spans 0.2–1.0 s.
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Fig. 6. Cumulative energy spectrum for a database that spans 0.2–0.35 s.
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Fig. 7. Cumulative energy spectrum for a database that spans 0.35–1.0 s.
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The advantage of this method is that the end of the transient regime can be accurately detected during cal-
culation. The disadvantage of this method is that there is not a unique value that determines the limit of the
transience for all six field variables.

The second method proposed for separating the snapshots was to monitor the ratio of the change in CPU
time and the change in physical time, DtCPU=Dt. During transience, longer computation times are needed per
time step as shown in Fig. 10. The advantage of monitoring this parameter is that the time slope is a single
value that describes the behavior of all six field variables. The disadvantage of this method is that it over pre-
dicts the end of the transience. The magnitude of the slope decreased rapidly until t ¼ 0:3 s and continued to
decrease somewhat slower to a quasi-constant value at t ¼ 0:45 s. Placing the end of the transient region at
t ¼ 0:45 s is more conservative than the 0.35 s predicted by the first method.

For the minimum fluidization case without database splitting, the reduced-order model with the modes
given by Set 2 of Table 2 was 21 times faster then the full-order model. When the database was split at
t ¼ 0:35 s, the number of modes used from 0.2 to 0.35 s was given by Set 2 of Table 2 and the number of modes
used from 0.35 to 1.0 s was 1 for each variable. Splitting the database at t ¼ 0:35 s resulted in a speed-up of 30
compared to the full-order model. The increase in the speed-up factor was result of using fewer modes in the
post transient period.
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Fig. 10. Slope of the total CPU time vs physical time measured at 0.01 s increments.
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The error of the reduced-order model with respect to the full-order model was defined as [2]
e@ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ð@FOM
i � @ROM

i Þ2
vuut ,XN

i¼1

j@FOM
i j; ð25Þ
where @ represents the dependent field variable, FOM denotes the full-order model, and ROM denotes the
reduced-order model with or without freezing. Here N is the total number of spatial grid points. The errors
of each variable were then used to calculate the average error as
eavg ¼ ðepg
þ e�s þ eug þ evg þ eus þ evsÞ=6: ð26Þ
In the case without database splitting the average error at t ¼ 1:0 s was 1.882E�2. The average error at
t ¼ 1:0 s while using database splitting was 4.370E�2. The error increased in the latter case because fewer
modes were used in the proper orthogonal decomposition.

5.2. Solver for linear systems with quasi-symmetric matrices

Let us consider the system of equations generated by projecting the solids volume fraction correction equa-
tion onto the basis functions extracted from an ensemble of �s snapshots. This system was derived in Section 3
and was written as
eA�sa�s ¼ eB�s ; ð15Þ

where a�s is the vector of unknowns a�si . The ‘k element of the eA�s matrix is
eA�s
‘k ¼ fu‘g

T½A�fukg �
XNB

nb¼1

fu‘g
T½Anb�fuknb

g; ‘; k ¼ 1; . . . ;m: ð24Þ
The eA�s matrix is not symmetrical because of the second term �
PNB

nb¼1fu‘g
T ½Anb�fuknb

g of the element eA�s
‘k.

The matrix would be symmetrical if fukg ¼ fuknb
g. The difference between the two vectors fukg and fuknb

g
is small, however, because the latter vector is evaluated at slightly different spatial locations compared to
the first vector. Similarly, the systems of linear algebraic equations (14)–(16) have matrices that are not sym-
metrical. These matrices, however, are quite close to being symmetrical, and for this reason will be called qua-
si-symmetrical. A typical example of a quasi-symmetrical matrix is the eA matrix obtained for m ¼ 8 [22]
eA ¼

196:4486 63:3060 6:0469 0:5038 �21:3047 11:9071 2:3488 �6:8064

63:3060 903:4807 �44:1690 6:3410 14:0286 �7:4939 6:1636 19:8724

6:0459 �44:1687 243:2099 �20:7951 �164:8536 68:0529 19:3275 �42:8377

0:5039 6:3411 �20:7953 930:9194 31:0348 20:0166 14:3861 15:2768

�21:3042 14:0288 �164:8535 31:0347 890:8742 32:1664 42:8224 �23:8698

11:9068 �7:4940 68:0527 20:0167 32:1663 904:3555 �10:8230 26:7999

2:3477 6:1634 19:3267 14:3861 42:8222 �10:8228 872:6460 92:5161

�6:8042 19:8722 �42:8362 15:2768 �23:8695 26:7996 92:5161 763:9839

�������������������

�������������������

:

ð27Þ
The algorithm proposed herein for solving a system of equations Ax ¼ b, in which the matrix A must be po-
sitive definite and quasi-symmetrical, begins by splitting the matrix into a symmetrical and a non-symmetrical
part [22]:
ðAs þ AnÞx ¼ b: ð28Þ
The decomposition of the A matrix into a symmetrical and non-symmetrical part is not unique. This issue will
be discussed later in the section, while for the moment one will consider that one of the possible choices was
used to split the A matrix.
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A solution of the symmetrical part is then obtained by solving the system of equations
Asxð1Þs ¼ b: ð29Þ

The solution of (28) is decomposed in a component obtained by solving the system (29) and a correction
needed because the matrix A is non-symmetrical
x ¼ xð1Þs þ xð1Þn : ð30Þ

Substituting (30) into (28) and deducting (29) yields
ðAs þ AnÞxð1Þn ¼ �Anxð1Þs or

ðAs þ AnÞxð1Þn ¼ bð1Þ:
ð31Þ
Note that the system of equations (31) has the same matrix as (28). Consequently, an iterative process can be
used to find the solution. xð1Þn can be considered a correction of the solution xð1Þs that is needed because the A

matrix is non-symmetrical. The correction xð1Þn can be split into two components: a component xð2Þs obtained by
solving the system Asxð2Þs ¼ bð1Þ and a correction needed because the matrix A is non-symmetrical, similarly to
the approach used in (30):
xð1Þn ¼ xð2Þs þ xð2Þn : ð32Þ

Substituting (32) into (31) and using Asxð2Þs ¼ bð1Þ yields
ðAs þ AnÞxð2Þn ¼ �Anxð2Þs or ð33Þ
ðAs þ AnÞxð2Þn ¼ bð2Þ: ð34Þ
This process of approximating the solution yields after p steps
x ¼ xð1Þs þ xð2Þs þ � � � þ xðpÞs þ xðpÞn ; ð35Þ

where the values xðiÞs , 1 6 i 6 p, are obtained by solving the linear system
AsxðiÞs ¼ bðiÞ; ð36Þ

where bðiÞ ¼ �Anxði�1Þ

s . The iterative process of adding corrections is stopped when xðpÞs is smaller than an im-
posed error.

The computation of xðiÞs requires the solution of the linear system (36) several times. The Cholesky decom-
position is used for the factorization of the positive-definite symmetrical matrix As. The method takes advan-
tage of the fact that the As is constant and only the right-hand-side vector bðiÞ changes.

The method proposed herein replaced the LU decomposition [23, p. 34] that was previously used to solve
the linear algebraic systems (14)–(17) [2]. For a system with m equations, the number of operations for the LU
decomposition is m3=3 while the number of operations for the Cholesky decomposition is m3=6.

As mentioned previously in this section, the decomposition of the A matrix into a symmetrical and a non-
symmetrical part is not unique. Two decompositions were explored herein in order to evaluate their effect on
the convergence of the solver algorithm.

In the first decomposition, the A matrix, aij, i; j ¼ 1; . . . ;m, was split such that the symmetrical and non-
symmetrical parts were
As ¼

a11 a21 . . . am1

a21 a22 . . . am2

..

. ..
. ..

.

am1 am2 . . . amm

266664
377775;

An ¼

0 a12 � a21 . . . a1m � am1

0 0 . . . a2m � am2

..

. ..
. ..

.

0 0 . . . 0

266664
377775:

ð37Þ
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In the second decomposition, the A matrix was split into a symmetrical matrix As and skew-symmetrical ma-
trix An
Table
Vector

1
2
3
4
5
6
7
8

As ¼
1

2
ðAþ ATÞ;

An ¼
1

2
ðA� ATÞ:

ð38Þ
These two decompositions were applied to solve the system of equations Ax ¼ b where the A matrix was given
by (27) and the right-hand-side term b was
b ¼ f�33:601113:487� 8:81839:586� 21:22133:225� 49:50717:622gT
:

For an imposed error of 10�9, the iterative solver algorithm converged for both decompositions in three steps.
The vector of corrections xðiÞs , shown in Table 6, indicates that in these cases the matrix decomposition had a
minimal effect on the convergence. The Euclidean norm of the relative error between the solutions obtained
using the two decompositions was 8:9� 10�31.

Numerical tests showed that three to four xðiÞs terms in (35) were usually sufficient to obtain a solution with
an error less than 10�6. Consequently, three to four xðiÞs solutions of the linear algebraic system of equations
(36) must be computed. Since only the right-hand-side term bðiÞ changes while the matrix As is constant, the
number of operations for the proposed method was increased by a factor proportional to m2 multiplied by
the number of xðiÞs terms in (35). As long as m is larger than 4, the computational cost of the proposed method
is approximately half that of the LU decomposition. It should be noted that this estimate does not include the
cost of searching for optimum symmetrization. The results shown in Table 6 indicated, however, that for the
case studied, the results were not affected by the type of symmetrization.

The magnitude of the non-symmetrical terms was gradually increased in numerical tests. Herein, the degree
of non-symmetry was defined as [24]
g ¼ kA� ATkF=kAþ ATkF;
where k kF indicates the Frobenius (or the Hilbert-Schmidt) norm [25, p. 56]. The solution of the Ax ¼ b sys-
tem mentioned above was computed for three error levels: 10�6; 10�9, and 10�12. The A matrix was decom-
posed using split option 1 (37). The degree of non-symmetry of the A matrix was increased by multiplying
the non-symmetric matrix As by different factors X, ranging from 1 to 5� 108. The variation of the degree
of non-symmetry of matrix A as a function of the factor X is shown in Fig. 11.

The variation of the number of iterations needed for convergence as a function of the degree of non-sym-
metry g is shown in Fig. 12a. It is remarkable that five or less iterations are needed for the convergence of the
solution for degree of non-symmetry g ¼ 0:01 that corresponds to a multiplying factor X ¼ 10; 000. The num-
ber of iterations increased to approximately 20 for g larger than 0.1 which correspond to multiplying factors
larger than 105. Certainly at these large X values the matrix is far from a quasi-symmetric matrix. If the mul-
tiplying factor X is further increased, the matrix is no longer positive definite and the algorithm cannot be used
because it relies on the Cholesky decomposition.
6
of corrections xðiÞs corresponding to matrix (27) for decompositions (37) and (38)

Split 1 (37) Split 2 (38)

xð1Þs xð2Þs xð3Þs xð1Þs xð2Þs xð3Þs

0.2205E+00 �0.5529E�06 0.7659E�12 0.2205E+00 �0.3159E�06 �0.3772E�11
�0.1401E+00 0.3505E�07 �0.1631E�12 �0.1401E+00 0.4948E�07 0.2289E�12

0.3053E�01 �0.2586E�06 �0.3920E�12 0.3053E�01 0.3431E�06 �0.2669E�11
�0.4188E�01 �0.1645E�07 0.8489E�14 �0.4188E�01 0.1406E�07 0.5404E�14

0.3669E�01 �0.8025E�07 �0.6626E�13 0.3669E�01 �0.2367E�07 �0.6342E�12
�0.4223E�01 0.4975E�07 0.3221E�13 �0.4223E�01 0.4024E�07 0.3478E�12

0.5685E�01 0.1344E�07 0.1147E�13 0.5685E�01 0.1726E�06 0.6542E�13
�0.1916E�01 �0.2588E�07 �0.1567E�13 �0.1916E�01 �0.4003E�06 �0.9619E�13
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Fig. 11. Degree of non-symmetry g as a function of the multiplying factor X.
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The Eulerian norm of the difference between the solution obtained using the LU decomposition and the
method proposed herein is shown in Fig. 12b as a function of the degree of non-symmetry g. The norm of
the difference increases as the degree of non-symmetry increases. The norm of difference is, however, smaller
than 10�10 even for values of g as large as 0.1. Consequently, the method can be applied to a larger class of
matrices than just matrices obtained in the proper orthogonal decomposition method, as long as these matri-
ces are positive definite.

5.3. Freezing the matrix of the linear system

The projection of the discretized differential equation onto the basis functions takes most of the computa-
tional time of a subiteration, as shown in Fig. 4b. For a minimum fluidization case [20] numerical tests showed
that the components of the projected eA matrix do not vary significantly past the transient period. To quantify
the variation of the eA matrix, the eigenvalues of eAðtÞ�1 eAðt þ DtÞ, where Dt is the subiteration time step, were
compared against 1, the eigenvalues of identity matrix. Table 7 shows the results of a comparison performed
using the eAvg matrices extracted from the transient and post transient periods. The eigenvalues varied by
4:1� 10�3% between subiterations in the transient period, and by 6:7� 10�7% in the post transient period.
Similar results were obtained for the other dependent variables. Since the eA matrices of the linear systems



Table 7
Eigenvalues of eAv�1

g ðtÞ eAvg ðt þ DtÞ during the transient (t = 0.25 s) and post transient (t=0.9 s) regime

Time Eigenvalues

t (s) k1 k2 k3 k4 k5

0.25 1.000000000 1.000000000 1.000000000 0.999982334 0.999936216
0.90 1.000000000 1.000000000 1.000000000 1.000000000 0.999999933
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(14)–(17) did not vary significantly between two subiterations, they were updated every other iteration to
reduce computational time. The eB vectors, however, were updated every subiteration.

Due to the possibility of accumulating errors because of freezing the eA matrix, skipping to update eA was
started only when the transient period ended. The relationship between the computational time and the phys-
ical time was used herein to determine when to stop updating the matrix every subiteration. Fig. 13 shows that
for t > 0:4 s the relationship between the CPU time and the physical time was close to linear. This is in agree-
ment with the results shown in Fig. 10 and indicates that the transient period ends at t ¼ 0:4 s.

The application of freezing resulted in a 10.1% decrease of computational time while using the modes from
Set 2 of Table 2. There was, however, an increase of the error compared to the reduced-order model without
freezing. The error of the reduced-order model with respect to the full-order model was defined by (25). The
error of the ROM with freezing, eF, with respect to the ROM without freezing, eNF, was defined as
Table
Errors

Variab

ug

vg

pg

�s
eF–NF ¼ jeNF � eF j=eNF:
Table 8 shows the errors of some of the dependent field variables at time t ¼ 1 s, the end of the integration
period. The largest error eF–NF corresponds to the solids volume fraction. The errors between the reduced-or-
der model and the full-order model for the solids volume fraction are extremely small. Consequently, the in-
crease of the error eF–NF

�s
in this case is not a concern.
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Fig. 13. Relationship between physical time and CPU time.

8
at t ¼ 1:0 s with and without freezing, using POD modes specified by Set 2

le eNF ð%Þ eF ð%Þ eF–NF ð%Þ
0.215 0.224 0.419
0.340 0.362 6.471
1:544� 10�5 1:643� 10�5 6.412
4:159� 10�5 5:059� 10�5 21.640



P.G.A. Cizmas et al. / Journal of Computational Physics 227 (2008) 7791–7812 7809
Given that freezing the projection of the eA matrix greatly reduces the number of operations per subitera-
tion, a 10.1% decrease of CPU time is a small improvement. This limited reduction of the computational time
was due to two factors. First, freezing was applied beginning at time t ¼ 0:4 s and for this reason affected only
a portion of the integration time. Second, an increase in the number of subiterations diminished the benefit of
saving computational time by not updating the eA matrix.

5.4. Time step adjustment

The FOM and the ROM use an identical method to adjust the time step during the integration. This
method can vary the size and the frequency of the time step adjustment. Given identical initial time steps
and time step adjustment parameters, the time step size in the ROM increased by at least one order of mag-
nitude, while the time step in the FOM remained almost constant, as shown in Fig. 14.

Three parameters were modified in the ROM to reduce the computation time: (1) the frequency of the time
step adjustment; (2) the size of the time step adjustment; (3) the size of the initial time step. Numerical tests
showed that the variation of the initial time step size was the most effective time step adjustment speed-up
method. The initial time step for the minimum fluidization case was varied between 10�4 and 10�3 s. Increasing
the initial time step size from 10�4 to 10�3 s reduced the computational time between 6.1% and 22.3%, depend-
ing on the number of modes used for the minimum fluidization case. This relatively small reduction in com-
putational time did not reflect the increase of the initial time step. Much of the computational speed-up was
lost because the size of the time step was reduced during the integration in the transient period to satisfy
convergence.

The optimal value for reducing the computational time was found to be 5� 10�4 s while the time step was
adjusted by �10% every 5 iterations. Increasing the initial time step above the optimal value did not diminish
the computational time because the time step must be reduced to achieve convergence. On the other hand,
when the initial time step was smaller than the optimal value, the time steps did not grow as large as in the
case with optimal initial time step.

5.5. Summary of acceleration methods

A summary of the speed-up factors achieved by the various versions of the reduced-order model is given in
Table 9. The speed-up factors are reported with respect to the full-order model. All the reduced-order models
used the number of modes specified by Set 2 of Table 2. Table 9 also shows the errors eavg (26) between the full-
order model and the various versions of reduced-order models.
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Fig. 14. Time step size vs. physical time: (a) FOM; (b) ROM.



Table 9
Speed-up factors and averaged errors: ROM vs. FOM

Speed-up factor Error, eavg

FOM 1 0
ROM with no acceleration 21 1.882E�2
ROM with database splitting 30 4.370E�2
ROM with projection freezing 23 0.151818
ROM with initial time step adjustment 25 1.601E�2
ROM with database splitting and initial time step adjustment 114 6.240E�2
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As shown in Table 9, the smallest errors correspond to the reduced-order model with initial time step
adjustment. The largest errors correspond to the reduced-order model with projection freezing. Since the
reduced-order model with projection freezing had the largest errors and the smallest speed-up factor, this
acceleration technique was considered least useful. Consequently only the acceleration techniques based on
database splitting and time step adjustment were combined.

Contour plots of the gas pressure and y-direction gas velocity at time t ¼ 1:0 s computed using the full-
order model and the reduced-order models are shown in Figs. 15 and 16. These figures also include contour
plots of the difference between the full-order model and the reduced-order models. Figs. 15 and 16 show that
the contour plots of pressure and y-direction gas velocity are not affected by the ROM used. Indeed, the dif-
ferences between the FOM and the ROMs are small, their relative values being at most of the order of 10�8 for
pressure and 10�4 for gas velocity. The largest errors corresponded to the solids velocities, and their values
were of the order of 10�2.
Fig. 15. Contour plots of gas pressure: (a) full-order model (FOM); (b) reduced-order model (ROM), no acceleration; (c) ROM, matrix
freezing; (d) ROM, database splitting; (e) ROM, initial time step adjustment; (f) ROM, database splitting and initial time step adjustment;
and the pressure difference between (g) FOM and ROM, no acceleration; (h) FOM and ROM, matrix freezing; (i) FOM and ROM,
database splitting, (j) FOM and ROM, initial time step adjustment; (k) FOM and ROM, database splitting and initial time step
adjustment (all values at t ¼ 1:0 s).



Fig. 16. Contour plots of y-direction gas velocity: (a) full-order model (FOM); (b) reduced-order model (ROM), no acceleration; (c)
reduced-order model, matrix freezing; (d) ROM, database splitting; (e) ROM, initial time step adjustment; (f) ROM, database splitting
and initial time step adjustment; and the velocity difference between (g) FOM and ROM, no acceleration; (h) FOM and ROM, matrix
freezing; (i) FOM and ROM, database splitting; (j) FOM and ROM, initial time step adjustment; (k) FOM and ROM, database splitting
and initial time step adjustment (all values at t ¼ 1:0 s).
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6. Conclusions

This paper presented several acceleration methods for reduced-order models based on the proper orthog-
onal decomposition method: (i) database splitting; (ii) an algorithm for solving quasi-symmetrical matrices;
(iii) a strategy for reducing the frequency of the projection.

The database splitting algorithm used the fact that fewer modes were needed for reconstruction when the
time domain was divided. Splitting the database into multiple subsets produced auto-correlation matrices that
contained more relative energy in the first modes. As the relative energy of the first modes increased, fewer
POD modes were needed in the reconstruction. Consequently, the speed-up factor compared to the ROM
without acceleration increased in the example considered herein by approximately 50%.

The algorithm for solving quasi-symmetrical matrices took advantage of the nearly symmetrical structure
of the matrices of the linear algebraic systems that yield the time coefficients of the reduced-order model. The
solution corresponding to the quasi-symmetrical matrix was approximated as a sum of solutions correspond-
ing to the symmetrical part of the matrix. By operating only on a symmetrical, positive-definite matrix, the
Cholesky decomposition allowed a reduction of the computational time by a factor of 2. The additional cost
for computing the corrections due to the matrix non-symmetry was minimal because: (i) typically three to four
iterations were sufficient to achieve an error less than 10�6; (ii) the operations count for calculating a correc-
tion was Oðm2Þ, where m was the matrix size.

The technique was developed for a POD-based reduced-order model of two-phase flows in fluidized beds.
For this application, however, the impact of halving the time for computing the linear system solution was
negligible because the time required to solve the system of equations was less than 1% of the total computa-
tional time. The method, nevertheless, can be used to solve a broader class of linear algebraic systems that
have positive-definite matrices.

The matrix freezing approach increased the computational efficiency by reducing the number of operations
performed during the post transient calculations. Although the eA matrix was not updated every subiteration,



7812 P.G.A. Cizmas et al. / Journal of Computational Physics 227 (2008) 7791–7812
the right-hand-side vector, eB, was updated every subiteration because it was computationally inexpensive and
beneficial. Matrix freezing led to a small decrease in the computation time (10%) because it was applied only
for a portion of the integration and because occasionally the number of subiterations increased in order to
achieve a converged solution.

These acceleration methods were tested both individually and in various combinations. The best combina-
tion proved to be database splitting in conjunction with initial time step adjustment. Using these two methods,
a speed-up factor of 114 was achieved for the ROM, as compared to the FOM, for the minimum fluidization
case.

Acknowledgment

This work was sponsored by the Department of Energy under Grant No. DE-FC26-05NT42445.

References

[1] P.G.A. Cizmas, A. Palacios, T. O’Brien, M. Syamlal, Proper-orthogonal decomposition of spatio-temporal patterns in fluidized beds,
Chem. Eng. Sci. 58 (19) (2003) 4417–4427.

[2] T. Yuan, P.G. Cizmas, T. O’Brien, A reduced-order model for a bubbling fluidized bed based on proper orthogonal decomposition,
Comput. Chem. Eng. 30 (2) (2005) 243–259.

[3] E.H. Dowell, K.C. Hall, J.P. Thomas, R. Florea, B. Epureanu, J. Heeg, Reduced order models in unsteady aerodynamics, in: 40th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, 1999.

[4] R. Florea, K.C. Hall, Reduced order modeling of unsteady flows about airfoils, in: Aeroelasticity and Fluid Structure Interaction
Problems, ASME International Mechanical Engineering Congress and Exposition, 1994, pp. 49–68.

[5] K.C. Hall, R. Florea, P.J. Lanzkron, A reduced order model of unsteady flows in turbomachinery, J. Turbomach. 117 (3) (1995) 375–
383.

[6] K.C. Hall, Eigenanalysis of unsteady flows about airfoils, cascades, and wings, AIAA J. 32 (12) (1994) 2426–2432.
[7] R. Florea, K.C. Hall, P.G.A. Cizmas, Eigenmode analysis of unsteady viscous flows in turbomachinery cascades, in: T.H. Fransson

(Ed.), Proceedings of the Eighth International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines,
Stockholm, Sweden, 1997, pp. 767–782.

[8] R. Florea, K.C. Hall, P.G.A. Cizmas, Reduced-order modeling of unsteady viscous flow in a compressor cascade, AIAA J. 36 (6)
(1998) 1039–1048.

[9] L. Sirovich, Turbulence and the dynamics of coherent structures, Quart. Appl. Math. 45 (3) (1987) 561–590.
[10] H.M. Park, M.W. Lee, An efficient method of solving the Navier–Stokes equations for flow control, Int. J. Numer. Methods Eng. 41

(6) (1998) 1133–1151.
[11] P.G.A. Cizmas, A. Palacios, Proper orthogonal decomposition of turbine rotor–stator interaction, J. Propul. Power 19 (2) (2003) 268–

281.
[12] Y. Utturkar, B.N. Zhang, W. Shyy, Reduced-order description of fluid flow with moving boundaries by proper orthogonal

decomposition, Int. J. Heat Fluid Flow 26 (2) (2005) 276–288.
[13] C. Homescu, L.R. Petzold, R. Serban, Error estimation for reduced-order models of dynamical systems, SIAM J. Numer. Anal. 43 (4)

(2005) 1693–1714.
[14] E.H. Dowell, D. Tang, Dynamics of Very High Dimensional Systems, World Scientific Publ. Co., New Jersey, 2003.
[15] D.J. Lucia, P.S. Beran, W.A. Silva, Reduced-order modeling: new approaches for computational physics, Prog. Aerospace Sci. 40 (1–

2) (2004) 51–117.
[16] M. Syamlal, W. Rogers, T.J. O’Brien, MFIX documentation theory guide, Tech. Rep. DOE/METC-94/1004, DOE/METC, 1994.
[17] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, 1980.
[18] M. Syamlal, MFIX documentation numerical technique, Tech. Rep. DE-AC21-95MC31346, EG&G Technical Services of West

Virginia, 1998.
[19] P. Holmes, J. Lumley, G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University

Press, 1996.
[20] T. Yuan, Reduced order modeling for transport phenomena based on proper orthogonal decomposition, Master’s Thesis, Texas

A&M University, College Station, TX, December 2003.
[21] F.S.B.F. Oliveira, K. Anastasiou, An efficient computational model for water wave propagation in costal regions, Appl. Ocean Res.

20 (5) (1998) 263–271.
[22] P.G.A. Cizmas, An acceleration approach for reduced-order models based on proper orthogonal decomposition, in: 45th Aerospace

Sciences Meeting and Exhibit, AIAA Paper 2007-713, Reno, Nevada, 2007.
[23] W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numerical Recipes in FORTRAN – The Art of Scientific Computing,

second ed., Cambridge University Press, 1992.
[24] N. Li, Y. Saad, E. Chow, Crout versions of ILU for general sparse matrices, SIAM J. Sci. Comput. 25 (2) (2003) 716–728.
[25] G.H. Golub, C.F. van Loan, Matrix Computation, second ed., The Johns Hopkins University Press, Baltimore, 1989.


	Acceleration techniques for reduced-order models based on proper orthogonal decomposition
	Introduction
	Full-Order Full-order model
	Governing equations
	Numerical solver
	Mass balance
	Momentum balance
	Gas pressure correction
	Solids volume fraction correction


	Reduced-order model based on proper orthogonal decomposition
	Structure of numerical algorithms
	Acceleration methods
	Database splitting
	Solver for linear systems with quasi-symmetric matrices
	Freezing the matrix of the linear system
	Time step adjustment
	Summary of acceleration methods

	Conclusions
	AcknowledgementAcknowledgment
	References


